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LElTER TO THE EDITOR 

A class of solutions of the time-dependent reaction-diffusion 
equation for the processes A + A + A and A + A + 0 

Stuart Simons and David Harper 
School of Mathematical Sciences, Queen Mary and Westfield College. Universily of London, 
Mile End Road, London El 4NS. UK 

Received 12 May 1994. in final form 8 luly I994 

Abstract. Consideration is given to the treatment of the nonlinear panial differential equation 
describing the diffusion of an assembly otpartieleh which simulraneonsly coagulate or annihilate. 
It is shown how a class of solutions may be obtained in I e m  of the solutions of an ordinary 
differential equation and dekded application is made to the case of an initially localized pmicle 
dishiblltion. 

The purpose of the present work is to develop a class of solutions to a problem which 
occurs in two distinct but closely related physical systems. The first of these is the 
coagulation process A + A --f A in which two particles coalesce to form a single particle. 
The original treatment of this by Smoluchowski [I] was confined to the timedependent 
spatially homogeneous situation, but since then consideration has been given to spatially 
inhomogeneous problems in which particles simultaneously diffuse and coagulate. For 
the case of simple coagulation kernels P (constant P, P proporrional to the sum of the 
interacting particle volumes), exact results have been obtained in this field by van Dongen 
[Z], Simons [3,4], Slemrod [5], ben-Avraham et al [6] and Doering and ben-Avraham 
[7]. The second system of interest is the annihilation process A + A -b 0 in which two 
particles coalesce to yield an inert product, and the corresponding situation with particles 
both diffusing and annihilating has been considered by van Dongen [Z], ben-Avraham et al 
[6], Doering and ben-Amaham [7], Kang and Redner [8,9], Kraemer [IO] and Clement er 
a1 [Ill. 

In both of the systems described above (with P constant for the coagulation case), the 
interaction term is of the form P N 2 ,  where N is the particle concentration. and thus both 
systems can be described by the same reaction-diffusion equation [12], 

where D is the diffusion coefficient. We non-dmensionalize this equation by defining 

X = ( P / D ) l P x  r = PI (2) 

and hence obtain 
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To develop a solution of this, we first note that the equation is invariant if X and T are 
each changed by an arbitrary additive constant. It is also invariant under the transformation 
X -+ AX, T + A's, N -P N / A 2  for arbitrary constant 1, and these considerations suggest 
a solution of the form 

N G ,  T) = f ( u ) / ( ~  +U) (4a) 

where 

U = ( X  + B ) / ( S  t CY)''* 

with constants U and p.  It is then readily shown that (4) yields a solution of (3) if f (u)  
satisfies the ordinary differential equation 

and we require solutions of this equation which are non-negative for all relevant U. To 
specify suitable boundary conditions for (3, we make the point that we are looking for a 
solution ?or N ( X ,  r )  with a clear well defined physical interpretation. Now, in the absence 
of coagulation it is known that there exists a solution of the diffusion equation (equation 
(3) with the right-hand side zero) of the form 

N ( X ,  T )  = r-'pexp(-X2/4r) 

which (for given T) corresponds to a localized distribution with a single maximum at X = 0, 
and decreasing monotonically and symmetrically to zero as X -+ +CO. It is to be expected, 
on physical grounds, that the introduction of coagulation or annihilation should not change 
this general picture, and that the possibility should therefore exist of obtaining a solution of 
(1) which qualitatively behaves in exactly the same way; it is this form of solution which 
we now wish to investigate. Bearing in mind that (5) is invariant for the transformation 
U -+ -U, it follows that N will be an even function of X if we take p = 0 and make f an 
even function of U by choosing as our first boundary condition 

f '(0) = 0 .  (W 
For our second boundary condition we take 

f (0) = A (66) 

and now proceed to consider what constraints there may be on the allowed values of A for 
our solution to behave as required. Since we want the stationary value at X = 0 to be a 
maximum, it is necessary that f"(0) < 0. and it then follows from (5) that for this to be 
so 0 < A < 1. (lt is readily seen that for A > 1, f -+ CO as X -+ &CO, while for A = 1, 
f (U) = 1 for all values of U giving N ( X ,  r) = ( r  +U)-' which is the standard spatially 
homogeneous solution of the time-dependent coagulation or annihilation equation.) For the 
form of solution under current consideration it is readily shown from (5) that as U + CO, 
f(u) - u - ~  and hence that lim,,+- uf (U) = 0. On integrating (5) from 0 to 03, we then 
obtain 
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Figure 1. f ( u )  for 0 e Y c IO. plotted for A = 0.50 (. . . . . .), the critical valve e (-), 0.80 
(----), 0.90 (- - -) and 0.95 (- . -). lXe corresponding value of the integral Z (equation 
9(b)) is i n d i a d  against each cwe.  

(the above asymptotic form for f(u) shows both of these integrals to be convergent), and 
this can only be satisfied with f(u) positive everywhere and monotonically decreasing in 
the interval [O, CO] if A > 4. Our analysis thus gives a necessary (but insufficient) condition 
f < A < 1 for our solution f (u)  to behave qualitatively as required. 

To progress further, we employed the computer algebra system Maple [I31 to confirm 
that there were no analytic solutions of (5) in terms of standard functions. We then used 
a standard Rung-Kutta-Fehlberg method [14] in order to calculate numerical solutions 
using the boundary conditions (6) with A taking values lying within the interval [ $, 11. It 
transpired that there exists a critical value of A, which we denote here by U ,  such that 
for U 6 A < 1, f(u) is positive everywhere and decreases monotonically to zero as U 

increases from 0 to CO, while for A 6 U - W9, f(u) becomes negative throughout the 
interval b 6 U < CO where b < 10. We determined that U N 0.689 843 61 1. In figure 1, we 
show representative graphs of f(u) for various values of A. For A 3 U these all have the 
same qualitative behaviour described earlier, but with the degree of localization increasing 
as A decreases from unity down to the value U .  

In general, the solution N ( X ,  r) given by (4)  will initialIy be set up at t = 0 by 
distributing a given total number of particles n = i-2 N ( x ,  0) dr in accordance with this 
solution for a particular choice of the parameters a and A which defines it. We rewrite our 
solution (4)  in the form 
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( y  = u/P) and note that the total number of particles at time t in the x-intesval l-CO, 001 
is given by 

where 
m 

f W d u  (96) 

(values of Z are shown against each of the graphs in figure 1). Corresponding to n(0) = n,  
we then have 

which for given n specifies a relation between the hitherto arbihary parameters A and y .  
We suppose A to be given a value within the interval [U, I ]  and eliminating y from (8) in 
favour of n then yields 

n = z ( A ) D ~ / ~ / P ~ ' / ~  (10) 

where 
Pn2 2 2 0  

C=- v = P C  a = -  
4Z2D Pn 

We note that for vt >> 1, N ( x , t )  takes the simpler form 

being independent of n. For given n, (11) give a class of solutions of (I), each being 
characterized by a particular value of A in the interval [U, I]. The smaller the value chosen 
for A ,  the greater will be the initial localization of particles, firstly because the function 
f (U) then decreases more rapidly for increasing U, and secondly because a given value of 
x will then correspond to a greater value of U as Z will be less. Maximum localization will 
occur when A = U ,  corresponding to Z = 1.45. 

As regards the time variation of the total number of particles, we see from (9) and (10) 
that 

n 
n ( t )  = ( 1 3 4  

(1 + vt)1P 
which takes the Limiting form 

for ut >> 1. We note that n ( t )  decreases with increasing t ,  as would be expected due' to 
the particle coagulation or annihilation, but that the rate of decrease is less rapid than in 
the spatially homogeneous situation where n( t )  = n/(l t Pnt). This is due to the fact that 
in our situation, the effect of diffusion is to continually disperse the particles over a wider 
region and hence to continually decrease their average probability of interaction. It is also 
worth remarking that (13) show n ( f )  to be less for smaller values of 2. This is readily 
understood as being due to the fact that smaller values of Z correspond to smaller values of 
A, which as explained earlier imply a greater initial particle localization and hence greater 
subsequent particle coagulation or annihilation. 

We would Lie to record our thanks to Malcolm MacCallum and Thomas Wolf who both 
offered very helpful advice on aspects of the investigation. We are also indebted to the 
referee for his constructive comments and suggestions. 
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